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Quantum Dimer Model on the Kagome Lattice: Solvable Dimer-Liquid and Ising Gauge Theory
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We introduce quantum dimer models on lattices made of corner-sharing triangles. These lattices include
the kagome lattice and can be defined in arbitrary geometry. They realize fully disordered and gapped
dimer-liquid phase with topological degeneracy and deconfined fractional excitations, as well as solid
phases. Using geometrical properties of the lattice, several results are obtained exactly, including the full
spectrum of a dimer liquid. These models offer a very natural–and maybe the simplest possible–
framework to illustrate general concepts such as fractionalization, topological order, and relation to Z2

gauge theories.
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FIG. 1. Medial lattice construction. From a trivalent lattice H
(full lines) we construct a lattice K whose sites (black dots) are
centers of the bonds. The sites of K are linked together (dashed
way. (iii) Dimer-dimer correlations are strictly zero above
one lattice spacing. This makes this SRK wave function the

lines) to form triangular plaquettes. The pseudospin variables
live on the dual of H (h and h0).
Quantum dimer models (QDM) were introduced by
Rokhsar and Kivelson [1] in the context of resonating
valence-bond (RVB) theories for the high-temperature
superconductors [2]. Such models are expected to describe
the dynamics of singlet bonds (dimer) in quantum dis-
ordered spin- 12 antiferromagnets. They can describe two
generic phases: spin liquids where the system breaks no
symmetry at all and dimer (or valence-bond) crystals
where long-range dimer-dimer correlations develop.
Recently, a genuine liquid phase with a finite correlation
length was found in a QDM by Moessner and Sondhi on
the triangular lattice [3]. Such liquid states have attracted a
lot of interest because they display both fractional excita-
tions and topological order [4]. While fractionalization
could play an important role in some theories of high-
temperature superconductors [2,5], the topological proper-
ties of these liquid states have been proposed as possible
devices to implement quantum bits for quantum computa-
tions [6,7].

In this Letter we introduce QDM which realizes such a
dimer-liquid phase. Because of the geometric properties of
lattices made of corner-sharing triangles (the simplest two-
dimensional example being the kagome lattice [8]), these
models are solved exactly. As for the solvable point of the
QDM on the square [1] and triangular [3] lattices (see also
Ref. [9,10]), the ground state is the equal-amplitude super-
position of all dimer coverings in a given topological sector
[11]. Such a state has been first considered by Sutherland
[12] (SRK state in the following) and is the prototype of the
resonating valence-bond (RVB) state. However, our model
has several important differences with previous analogs:
(i) Not only the ground state but all excited states wave
functions are known. Elementary excitations are (pairs of)
noninteracting and gapped vortices [13] (called visons in
recent literature [5]). (ii) The model can be solved on any
geometry: torus, discs, or spheres. This allows one to
investigate the interplay between topology, ground-state
degeneracy, and elementary excitations in a very simple
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most possible disordered dimer-liquid state. (iv) This state
is inside the liquid phase, it is not lying at the phase
boundary with a crystalline phase. (v) It is known [14]
that QDM can be obtained as special limits of Z2 gauge
theories, the gauge variable being the dimer number on a
bond. Here we show a complete equivalence with a Z2

gauge theory. This allows one to investigate the confine-
ment transition which goes with a dimer crystallization in a
simple QDM which exhibits a liquid to solid transition
accompanied by a vison condensation.

For all these reasons the model we introduce is more
than a toy model, but the simplest RVB liquid. It is a ‘‘free
dimer-liquid’’ point in the short-ranged RVB phase. It
shows the generic properties which characterize that state
of matter, but almost any quantity can be computed exaclty.
It is a natural starting point for perturbative expansions
toward more realistic models.

Medial lattice construction.—The dimer models de-
scribed in this letter can be defined on lattices made of
corner-sharing triangles, constructed in the following way.
Let H be a trivalent lattice (each site has three neighbors).
The lattice K, where the dimers live, is the medial lattice of
H, i.e., the sites of K are the midpoints of the bonds of H
(Fig. 1). If H is the honeycomb lattice, K is the kagome
lattice [Fig. 2(a)]. In the following, unless mentioned oth-
erwise, we use kagome for simplicity, where plaquettes of
H are hexagons. We stress, however, that all results can be
generalized straightforwardly to other lattices (squagome
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FIG. 2. Left: A dimer covering on the kagome lattice (fat
bonds). The corresponding arrow representation is displayed.
The kagome lattice is the medial lattice of the hexagonal lattice
(dashed bonds). Right: A pair of visons is created by applying to
the SRK wave function a factor �	1� for each dimer crossing the
cut 	. It is an exact eigenstate of Eq. (2).
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[15] lattice for instance, as well as one-dimensional
examples [16]).

Pseudospin representation.—Let us begin with the defi-
nition of a simple dimer model. For each hexagon h, we
define an operator �x�h� as the sum of all possible kinetic
energy terms involving h only,

�x�h� �
X32
��1

jd��h�ih �dd��h�j � j �dd��h�ihd��h�j: (1)

The sum runs over the 32 loops on kagome which enclose a
single hexagon and around which dimers can be moved
(see Ref. [17] for an explicit list). The shortest loop is the
hexagon itself, it involves three dimers. Four, five, and six
dimer moves are also possible by including two, four, and
six additional triangles (the loop length must be even). The
largest loop is the star. For each loop � we associate the
two ways dimers can be placed along that loop: jd��h�i and
j �dd��h�i.

For a given dimer covering jDi, all the kinetic operators
in the sum but one annihilate jDi. As a consequence,
�x�h�2 � 1. One can further check that these operators
flip the pseudospin variables �z�h� introduced by Elser
and Zeng [17,18] (EZ) to label dimer coverings [19]. It is
important to note that �z operators depend on the choice of
a reference jD0i and are not local, unlike �x. The �x�h�
commute with each other. This is not obvious from Eq. (1),
and it is most easily demonstrated in terms of the arrow
representation that we introduce below.

Arrow representation.—A correspondence between
dimer coverings on the kagome lattice and sets or arrows
as illustrated in Fig. 2(a) was introduced by Elser and Zeng
[18]. Each arrow has two possible directions: it points
toward the interior of one of the two neighboring triangles.
If site i belongs to a dimer �i; j� its arrow must point toward
the triangle the site j belongs to. Consider a triangle with-
out any dimer, this arrow rule implies that it will have three
outgoing arrows. Other triangles will have two incoming
arrows and one outgoing arrow. In other words, the number
of outgoing arrows is constrained to be odd.
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The number of dimer coverings is 2N=3�1, where N is
the number of sites [18,20]. K has N sites and N arrows,
2N=3 triangles, and one constraint per triangle. However,
only 2N=3	 1 constraints are independent because their
product for all triangles is equal to one. We are left with
N=3� 1 Ising degrees of freedom. The existence of this
arrow representation is a central reason for which QDM
considerably simplify on these lattices. For example,�x�h�
translates very simply in the arrow representation: it flips
the six arrows sitting around hexagon h, which clearly
conserves the constraint for all triangles and commutes
from hexagon to hexagon.

Rokhsar-Kivelson point.—Consider the following
Hamiltonian:

H 0 � 	�
X
h

�x�h�; (2)

where the sum runs over hexagons (sites of the dual ofH in
general). Although very simple in the pseudospin varia-
bles, this Hamiltonian is not obviously solvable when
written with dimer operators. In the pseudospin variables
the ground state is a fully polarized ferromagnet in the x
direction, which is the sum of all pseudospin configura-
tions in the EZ �z basis. Back to dimers, this is nothing but
the sum of all dimer configurations in a given topological
sector, that is, a SRK wave function [1]. The ground state
appears to be unique in each topological sector, which
gives a global four-fold degeneracy on the torus.

Correlations.—Correlations in the SRK state of the
kagome lattice are particularly simple: irreducible dimer-
dimer correlations are strictly zero when their correspond-
ing triangles do not touch. The arrows on two bonds are
independent provided they are not involved in a common
constraint, that is, a common triangle. As a result, dimers
on the kagome lattice are the most possible disordered:
they are independent above a finite distance.

Gap.—The whole spectrum is known. The �x operators
commute from hexagon to hexagon but physical dimer
states must satisfy

Q
h �

x�h� � 1. This constraint comes
from the arrow representation since

Q
h �

x�h� flips all the
arrows twice and therefore keeps all dimerizations un-
changed. The first excited state appears not to be a single
but a pair of flipped hexagons with energy cost � � 4�.

Visons.—Despite the simplicity of the model in the
pseudospin variables, its excited states are not local when
expressed with dimer degrees of freedom. A �x�h� � 	1
hexagon is a vortex excitation (also called vison [5]).
Consider a string which goes from a hexagon a to a
hexagon b [see Fig. 2(b)] and let 	�a; b� be the operator
which measures the parity 
1 of the number of dimers
crossing that string. 	�a; b� commutes with all �x�h�,
except for the ends of the string: �x�a�	�a; b� �
		�a; b��x�a�. A dimer move changes the sign of
	�a; b� if and only if the associated loop crosses the string
an odd number of times, which can only be done by
surrounding one end of the string. This shows that
	�a; b� flips the x component of the pseudospin in a and
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b [21], and 	�a; b�j i is precisely the excited state of
energy 4� discussed above. Visons appear to be perfectly
localized in this model.

Spinons.—One can consider the system with two static
unpaired sites (spinons or holes). As for others, QDM at a
SRK point [1,3], the sum of all dimerizations in a given
sector remains an exact eigenstate. The energy turns out to
be independent of the relative distance between spinons,
which is a strong indication that spinons would be also
deconfined if they had kinetic energy. Eventually, we note
that taking a spinon around a vison will change the wave
function by a 	1 factor, as expected [13].

Visons and topology.—On a closed surface of genus g,
the spectrum has a degeneracy given by the number of
topological sectors 22g, and excitations are pairs of visons,
as already mentioned. When the sample has edges, the
constraint

Q
h �

x�h� � 1 is not valid anymore. To handle
this case we introduce �x�~hh�, which flips the arrows along
the edge and restores �x�~hh�

Q
h �

x�h� � 1. The excitations
are still pairs of visons, but one vison can be located in the
hole [5]. In this case the gap reduces to 2�. In a cylinder
geometry, as in Ref. [7] for instance, we have two sectors
and a doubly degenerate spectrum. It is interesting to note
that this dimer liquid has no low-energy edge states.

Liquid-solid transition.—We consider a new QDM
which is a generalization of Eq. (2),

H 1 � H 0 	 J
X
hh;h0i

�z�h��z�h0�; (3)

where the second sum runs over pairs of neighboring
hexagons. The �z operators are those defined by EZ,
they depend on the choice of a reference dimerization
jD0i. A term �z�h��z�h0� is local; it is � 1 if the arrow
which is in between h and h0 is in the same position as in
the reference state and 	1 otherwise. Since �z�h��z�h0� is
equivalent to 	�h; h0�, we see that such a term allows one
to create, annihilate, and move visons in the system. From
another point of view, the J term in Eq. (3) counts the
number of arrows to be flipped to recover the reference
state. If J goes to �1, this Hamiltonian obviously selects
the reference state as the ground state and dimers are
completely frozen. In the pseudospin language, H 1 is an
Ising ferromagnet in transverse field, which displays
a second order phase transition at a critical value of
� separating two phases: a ferromagnetic phase with
h�zi > 0 and a paramagnetic phase with h�zi � 0. From
what we know of the � � 0 and � ! �1 limits we can
identify the first one with a dimer solid and the second one
with the liquid. From the Ising point of view, the solid
phase is characterized by h�zi > 0. The two ferromagnetic
Ising states (h�zi � 
1) correspond to the same dimer
state on a closed surface but differ along the edge for
open systems. The Ising magnetization h�z�h�i provides
a nonlocal order parameter for the dimer solid, h	�h;1�i,
which involves a string going to infinity.
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Up to a sign, �z�h� is the sum of a creation and annihi-
lation operators of a vison. The dimer solidification
can therefore be interpreted as the onset of off-diagonal
order and macroscopic occupation number (of the zero-
momentum state) for the visons. This QDM realizes a
condensation of topological defects (‘‘kinks’’ [22,23] or
visons [5]) at the confinement transition.

Notice that, although we call it a solid, the large-J phase
does not go with a spatial spontaneous symmetry breaking
since the J part of H 1 depends on an arbitrary reference
state through the �z operators; this term acts as an external
potential which tends to pin the dimers along the reference
state.

Z2 gauge theory.—The model of Eq. (3) is the dual of a
Z2 gauge theory [24] (in its Hamiltonian formulation)
where the gauge degrees of freedom �z�i� live on the bonds
of H (i.e., sites of K). By definition �z�i� is the operator
which flips the arrow at site i and gauge-invariant observ-
ables are made of products of �z around closed loops.
Spatial gauge transformations require the x component,
which we define with respect to the reference state jD0i:
�x�i� � 1 if the arrow i has the same orientation as in jD0i
and �x�i� � 	1 otherwise. For every site of H (every
triangle of K), the constraint reads �x�i1��x�i2��x�i3� � 1
where i1, i2, and i3 are the bonds of H emanating from that
site. This expresses the fact that physical states must be
gauge invariant. This shows a one-to-one correspondence
between the physical state of the gauge theory and dimer
coverings of K, and the redundancy in the gauge theory is
solved by the dimer coverings. We wish to express H 0

with the gauge degrees of freedom. Since �x�h� operator
flips all the arrows around h, it becomes the plaquette
operator

�x�h� �
Y
i

�z�i�; (4)

where the product runs over the bonds of H surrounding h.
The Ising interactions can be written as

�z�h��z�h0� � �x�i�; (5)

where i is the common link between h and h0 (see Fig. 1).
As a result, the QDM of Eq. (3) translates into the
Hamiltonian of a Z2 gauge theory (in continuous time),
which is a manifestation of the well-known duality be-
tween Z2 gauge theories and Ising models [23,24]. Such
a Z2 gauge theory has confined and deconfined phases. A
classical result is that they can be distinguished through the
expectation value of a gauge-invariant Wilson loop [23,24]

W�!� �

* Y
i2@!

�z�i�

+
�

*Y
i2!

�x�i�

+
; (6)

where the first product runs over a close loop @! which
surrounds the area !. W�!� changes from a perimeter law
� exp�	j@!j� to an area law � exp�	j!j� when going
from the deconfined at large � to the confined phase at
large J. The right-hand side of Eq. (6) expressesW�!� as a
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correlation function for the dimer problem. W�!� moves
dimers along the loop @!, and the mapping to the gauge
theory tells us that its long-distance behavior characterizes
the liquid and frozen phases.

Liquid-crystal transition.—H 1 has the disadvantage of
depending on a specific reference state. To remedy for that
we introduce a QDM which is reference free and restores
the full lattice symmetry,

H 2 � H 0 	 J
X
h

sz�h�; (7)

where sz�h� � 
1 is diagonal in the dimer basis and
counts a factor 	1 per anticlockwise arrow around the
hexagon h. In the J ! 1 limit, the system selects sz�h� �
1 everywhere. This can be achieved if the system sponta-
neously breaks the translation symmetry and crystallizes in
an ordered pattern of six-dimer ‘‘stars’’ described in
Ref. [25]. These ordered states are degenerate with others
(� 23L where L is the linear size) obtained by shifting the
dimers along any straight line.

We have looked numerically (diagonalizations up to
54 kagome sites) at H 2 and found evidence for a single
and continuous transition from the liquid to the star crystal
at J ’ �. This appears as a collapse of the first excitation of
the liquid, which then transforms into a degenerate ground
state of the crystal phase. We claim that the critical point is
exactly at J � � from a duality argument. From the arrow
representation it is clear that �x�h� and sz�h0� commute
except if h and h0 are neighbors, in which case they
anticommute. Indeed the algebraic relations of �x and sz

are completely symmetric. In particular, we observed nu-
merically that the ground-state energy is exactly symmetric
with respect to the exchange of � and J (this is not true for
all the eigenstates), and the critical point must lie at the
self-dual point J � �.

Conclusions.—The kagome lattice has the remarkable
property that dimer coverings correspond to the physical
states of an Ising model on the triangular lattice and, by
duality, of a Z2 gauge theory on the hexagonal lattice.
Exploiting this, we introduced QDMs for which exact
results are derived. In particular, we obtained for the first
time the full spectrum of a QDM realizing a dimer-liquid
phase. It explicitly realizes fractionalized excitations and
topological order. Through several models we showed that
QDMs on the kagome lattice are very simple and natural
tools to investigate the connections between frustrated
magnets, RVB physics, and spin-charge separation.

We are grateful to M. Gaudin, K. Mallick, R. Moessner,
C. Lhuillier, and M. Feigel’man for several fruitful dis-
cussions. Numerical diagonalizations of QDM were done
on the Compacq alpha server of the CEA under Project
No. 550.
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